
Supplementary Information for Marie-Nelly et al. 1

 2

Supplementary Data 1. Most likely genome structure for the Malaysian yeast strain after 3

47,880 iterations 4

This file generated by GRAAL recapitulates the correspondence between the genome used for the 5

initialization of GRAAL and the most likely genomic structure recovered at the end of the 6

process. Superscaffolds generated by GRAAL are indicated in the first column, with the 7

corresponding bin from the original genome indicated below each superscaffold under the 8

“init_published_scaffold” label. The index, orientation, and initial coordinates of each bin within 9

the initial genome sequence are also indicated. 10

 11

Supplementary Data 2. Most likely genome structure for the T. reesei strain QM6A after 12

31,920 iterations 13

This file generated by GRAAL recapitulates the correspondence between the genome used for 14

initializing the algorithm and the most likely genomic structure recovered. Superscaffolds 15

generated by GRAAL are indicated in the first column, with the corresponding “bin” from the 16

original genome indicated below each superscaffold under the “init_published_scaffold” label. 17

The index, orientation, and initial coordinates within the initial genome sequence are also 18

indicated. 19

 20

Supplementary Data 3. Fasta file of the most likely genome structure of the UWOPS03-21

461.4 Malaysian yeast strain after 47,880 iterations 22

 23

Supplementary Data 4. Fasta file of the most likely genome structure of the T. reesei strain 24

QM6A after 31,920 iterations 25

 26

Supplementary Data 5. List of the 2,917 de novo contigs of chromosome 14 from sequencing 27

libraries downloaded from the GAGE competition website used for initializing GRAAL. 28

 29

Supplementary Data 6. List of the 8,382 bins generated from these 2,917 contigs from 30

Supplementary Data 5. 31

 32

 33

 34

Supplementary Figure 1: Assembly of virtual S. cerevisiae contigs using Lachesis
1
 and dnaTri

2
. 35

(a) Example of inaccurate clustering by Lachesis, starting with the set of bins assembled by 36

GRAAL in Fig. 2. Two large chromosomal segments of chromosome 13 were attributed to 37

clusters 10 and 15, whereas two small regions of the same chromosome were incorporated in 38

clusters 0 and 2 (red arrowheads). (b) Example of inaccurate clustering by Lachesis of small 39

chromosomes 1, 3, and 6 into a single cluster. Note that although the 95% of the bins are 40

correctly aligned with respect to their neighbors, this measure does not reflect the overall quality 41

of the assembly. (c) dnaTri also fails to retrieve the correct number of yeast chromosomes when 42

applied to yeast contact data. Both plots were generated by dnaTri. The left plot shows the 43

average clustering step length as function of the number of clusters tested (see Figure 3a of the 44

dnaTri paper
2
). The number of clusters chosen by dnaTri corresponds to the maximum of this 45

graph and in this case equals 2 instead of the expected number of 16 chromosomes. The right plot 46

shows the assignment of contigs from the 16 chromosomes to clusters, revealing that the vast 47

majority was incorrectly grouped into a single cluster. 48

49

 50

Supplementary Figure 2: Distribution of the error rate for sets of randomly down-sampled 3C 51

dataset (from 1X to 0.001X for the S. cerevisiae matrix containing 21,457,486 contacts). The x-52

axis represents the error rate in log scale. For each down-sampled dataset, 15,000 iterations were 53

performed. 54

 55

 56

57
 58

Supplementary Figure 3: Evolution of the parameters of the model (a) The slope reflects the 59

intrachromosomal contact frequencies as a function of genomic separation (i.e. nuisance 60

parameter b in the model; Material and Methods), repeatedly revisited over the 50,000 iterations 61

in light of contact data. (b) Dist_max_intra represent the threshold, in kb, allowing discrimination 62

between intra- and inter-chromosomal contacts, with inter-chromosomal frequencies assumed 63

constant, corresponding to nuisance parameter . Both the slope and the Dist_max_intra values 64

are repeatedly reassessed based on the 3D data, fluctuating around an average value (μ), as 65

illustrated by the close-ups (red (red dotted squares) on each curve. (c) Evolution of the 66

likelihood and the number of contigs as function of the number of iterations. 67

 68

 69

 70

 71

 72

 73

 74

Supplementary Figure 4: Overview of the GRAAL algorithm. 75

 76

 77

Supplementary Table 1. Features of three genome assembly algorithms based on 3D contact 78
data 79
 80

Feature GRAAL Lachesis1 dnaTri2

Predicts number of
chromosomes

Yes No Yes

Corrects automatically initial
misassemblies

Yes No No*

Orients contigs Yes Yes No

Identifies repeated regions Yes No No

Estimates assembly
uniqueness

Yes No No**

 81
* not directly: the user can still cut the initializing contigs before the clustering step 82

** the probabilistic framework of the dnaTri algorithm is very elegant and allows it to estimate 83

the likelihood of the structure, but, as acknowledged by the authors, there is no guarantee on the 84

global optimum of the solution. 85

 86

 87

Supplementary Table 2: Sequencing adapters used in this study 88

oligos sequence library

MM70 GTANNNNNNAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAG
Malaysian yeast strain

MM71 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNTACT

MM182 TCTNNNNNNAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAG
YKF1246 yeast strain

MM183 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNAGAT

MM106 TGGNNNNNNAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAG
QM6a T. reesei strain

MM107 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNCCAT

MM108 CCANNNNNNAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAG
E. histolytica strain

MM109 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNTGGT

 89

 90

 91

 92

Supplementary Table 3. Summary of the initialization parameters for the different analysis 93

Dataset enzyme nb of bins n contacts Mean nb of

RFs per bin

mean bin

size (kb)

S. cerevisiae DnpII 1086 21457086 27 11

Trichoderma reesei QM6a DnpII 1193 15014468 27 27,9

YKF1246 S.c. strain DnpII 1295 21830579 27 9,5

Malaysian S.c. strain DnpII 3136 8353283 9 3,8

Human chr7/17/19/22 HindIII 3607 19672219 9 95,9

Human de novo chr14 HindIII 8382 1156115 3 8,8

 94

 95

 96

 97

Supplementary Method 98

 99

The following provides a more detailed description of the algorithm implemented in GRAAL. 100

 101

The description of GRAAL can be divided into two main components: (i) the probabilistic model 102

that assigns a likelihood to a given linear (one-dimensional) genome structure given a specific 103

contact/Hi-C data set, and (ii) the sampling algorithm used to explore the space of linear genome 104

structures (and nuisance parameters). 105

 106

A. Probabilistic model 107

 108

A.1. Bayesian inference approach: 109

We consider the genome assembly problem as a Bayesian inference problem, taking inspiration 110

from previous work in protein structure determination
3
. In its simplest form, the Bayes rule reads: 111

 () () ()

where G denotes the linear genome structure to be determined, D is the Hi-C data set (both will 112

be defined more precisely below), () is the probability density of A conditioned on B, and 113

indicates proportionality. Our goal is to determine, or at least approximate, the posterior 114

probability (). The above formula provides a means to compute this probability density (up 115

to a normalizing factor) given a probabilistic data generation model, () (called likelihood) 116

and data-independent assumptions about the structure, encapsulated by the prior probability 117

 (). 118

 119

In practice, our data generation model involves several parameters (called nuisance parameters) 120

that are not known a priori (see below). Therefore, we include these parameters, collectively 121

noted as , in the Bayesian formulation, yielding: 122

 () () () () () ()

where for the latter identity we assumed statistical independence of the genome structures G and 123

the nuisance parameters . 124

 125

We next assume that in absence of data, all possible genome structures and nuisance parameters 126

are equally probable, i.e. that () and () are constants (flat priors). With these assumptions 127

the Bayes rule reduces to: 128

 () ()

 129

To compute the likelihood () we need a data generation model that relates the contact 130

frequencies measured by the Hi-C experiment to an assumed linear genome structure and the 131

nuisance parameters. 132

 133

A.2. Notations and definitions for the genome structure G and the Hi-C data D: 134

Before describing our model for () , we need a more formal definition of the variables G, 135

and D. The parameters will be defined in section A.1.3. 136

 137

Genome structure: 138

First, we define G as an unordered set of N contigs : 139

 { }

If the genome is perfectly assembled, each contig corresponds exactly to a single chromosome. 140

Hi-C reads are mapped to restriction fragments defined by the restriction enzyme cutting sites. 141

We therefore consider the restriction fragment as the elementary units of a genome assembly. 142

However, many operations performed by GRAAL are not applied to individual restriction 143

fragments, but to ordered sets of p consecutive fragments, which we call 'bins' and note : 144

 ()

Whenever possible, we choose where is a single user-defined constant typically set to 145

3. However, if the number of restriction fragments in a contig is not a multiple of , then some 146

bins will consist of fragments. 147

We define a contig as an ordered sequence of bins, noted: 148

 (

)

where { } is the set of all bins, is the number of bins in contig and is 149

an indexing function with
 []. The subscript in is used to indicate that the bins 150

rely on an initial assumed set of contigs . We also introduce the two functions () and () 151

such that: 152

{
 (

)

 (
)

Next, we define () as the genomic distance (in units of base pairs) between two bins. This 153

distance is obviously only defined for bins belonging to the same contig, i.e. for () (). 154

For () () we consider that () . 155

 156

Hi-C/3C-seq contact data: 157

The chromosome contact data used by GRAAL are obtained after mapping the Hi-C/3C-seq 158

reads to an initial set of fragments . We define D as the matrix whose entries 159

(() []

) are the number of Hi-C3C-seq reads pair mapped to each pair of fragments 160

(). Please note that, although the sampling algorithm of GRAAL (described below) 161

manipulates the genome structure at the level of super-contigs, the likelihood will always be 162

evaluated by considering the contact data at the resolution of individual fragments. 163

 164

 165

A.3. Likelihood and nuisance parameters: 166

We now need a means to relate the probability of the matrix D to the assumed linear genome 167

structure G. Our first step is to relate the probability of each entry to the contact probability 168

between fragments and , which we note . Since results from a counting process, its 169

probability can be modeled as a Poisson distribution: 170

{
 () oisson() {

 for

 otherwise

where is the total number of independent counts. Although is strictly speaking also a 171

random number (which depends chiefly on sequencing depth and criteria used to validate the read 172

pairs), for simplicity we treat it as a constant and simply set: ∑ ∑

. We further 173

assume that contacts between distinct pairs of fragments are independent from each other, such 174

that : 175

 () ∏∏ ()

which implies: 176

 () ∏∏ oisson()

In order to be able to calculate (), we now need to relate the contact probabilities to 177

 and 178

Contact probabilities are intimately dependent on how chromosomes are folded and positioned 179

relative to each other. The detailed relationship between the 3D and 1D architecture of the 180

genome is in general complex, depends on the organism and cell state, and is subject of much 181

current research (e.g.
4
). Nevertheless, some important features are present in all Hi-C/3C-seq 182

data sets obtained so far, and are also in good agreement with predictions from polymer physics. 183

Specifically, the contact probability between loci on the same chromosome (cis contacts) 184

decays as a power law with increasing genomic distances s (as expressed in bp). This relation 185

holds up to a genomic distance above which contact probabilities are approximately constant, 186

i.e.: 187

{
 () (

)

 for

 () for

These relationships have been approximately verified in a number of different organisms, with 188

variable values for b , and , and can be recapitulated by computational simulations of 189

polymer dynamics
5–9

. 190

The contact probabilities between loci on distinct chromosomes (trans contacts) are less 191

amenable to simple theoretical predictions and arguably more sensitive to biological specificities 192

such as organism and cell type. They are also on average much weaker than cis contact 193

probabilities. For simplicity and generality, we therefore simply assume that trans contacts have 194

the same probability as long-range cis contacts: 195

Our probabilistic model is therefore characterized by only 3 parameters, collectively noted as : 196

 (). 197

Because these parameters cannot reliably be predicted a priori, they will be sampled together 198

with G as will be detailed below. 199

 200

With the equations above, we now have all ingredients to calculate (): 201

 202

 () ∏ ∏ oisson()

 (Eq 1) 203

 204

with: 205

 () (()) {
 (

 ()

)

 if ()

 otherwise
 (Eq 2) 206

 207

B. Sampling algorithm 208

The above formulas allow us to compute the posterior probability of any assumed linear genome 209

structure G (and the nuisance parameters) given D, a contact data set obtained by mapping 3C-210

seq/Hi-C reads to an initial set of contigs. In order to explore the entire probability density 211

 (), we need a method to sample the extremely large (or infinite) space of possible linear 212

genome structures. For this purpose, we implemented an algorithm inspired by the Markov-Chain 213

Monte-Carlo (MCMC) Gibbs sampler. Starting from an initialization () the algorithm 214

makes a large number of random moves across the space () to be sampled, and uses a 215

probabilistic rule to accept or reject individual moves () (). After a sufficient 216

number of steps, once the chain has reached equilibrium, a subset of the accepted samples can be 217

used to approximate the global maximum of the probability density (). An overview of the 218

algorithm's main modules is provided in . 219

At each iteration, GRAAL updates first nuisance parameters and then the genome structure . 220

Below, we separately describe first the initialization of and and then the update rules 221

for and . 222

 223

 224

 225

 226
 227

B.1. Initialization of the genome, 228

Different initializations can be considered for the initial set of contigs depending on the 229

availability of a preliminary assembly of the organism under study, or of a related genome. The 230

initial set of contigs does not need to be perfect, since GRAAL can split and rearrange incorrectly 231

assembled contigs. However, in our current implementation, the restriction fragments and the 232

bins , whose definition depends on , cannot be broken. In our paper, we considered the 233

following different types of initializations: 234

 The reference budding yeast genome (16 chromosomes; GCF_000146045.1) was used as 235

validation data, since a high quality assembly of this genome is already available. In order 236

to simulate an incomplete assembly of this genome, we split the genome into 1,086 237

bins (of approximately 11Kb) to initialize GRAAL. 238

 For YFK1246, the structural mutant of budding yeast
10

, 3,171 bins of 9 RFs (DpnII 239

restriction enzyme) of the reference budding yeast genome were used to initialize 240

GRAAL. 241

 We also used this initialization to assemble the Malaysian budding yeast isolate 242

(UWOPS03-461.4). 243

 The Trichoderma genome (ATCC 13631)
11

 of strain QM6a was only partly assembled 244

(including using long-insert paired-end data), yielding 77 scaffolds. Rather than 245

initializing with these scaffolds, those were split into bins of 81 RF, which led to 246

 bins that were used to initialize GRAAL. 247

 For the human chromosome 14, we downloaded the 4,722 contigs obtained from the 248

ALLPATHS-LG de novo assembly (average siz e 20kb)12. A filter was applied to 249

identify RFs (from the HindIII restriction enzyme used in the Hi-C experiment13) 250

presenting little or no read coverage. If reads appears sparse along a RF compared to 251

the distribution of read coverage over the entire population of RFs, the RF was discarded. 252

If the entire contig appeared undercovered, it was therefore discarded. A similar filtering 253

step is used by dnaTri2. We then split the remaining 2,917 contigs into bins of 3 RFs. 254

As a general strategy to complete the assembly of an imperfectly assembled genome, we 255

recommend starting from the existing contigs and splitting them into bins as illustrated here for 256

Trichoderma. The user of GRAAL has the option to choose whether to split these contigs or not 257

(see section B). 258

 259

B.2. Initialization of the nuisance parameters, 260

The initial values of the parameters () are obtained based on the Hi-C data D and 261

the initial genome structure as follows: 262

First, the initial value of is set to the contact probability averaged over all pairs of bins 263

belonging to different contigs, i.e.: 264

∑ (() ())

∑ (() ())

where if i=j and otherwise. 265

Next, we construct a histogram of cis-contact frequencies with genomic intervals [], 266

ranging from 0 to () the length of the longest contig in . For each 267

genomic bin [], the histogram reports the mean contact frequency, among all contigs, 268

between bins sharing a contig and separated by genomic distances []: 269

∑ () () (()) (())

∑ () () (()) (())

 where H is the Heaviside function (() for and () otherwise) . We then 270

estimate the initial values of and by least squares fitting of (Eq1) to , i.e.: 271

()=arg min ∑ ((

()))

 272

 This minimization is performed using a quasi-Newton method
12

. 273

 274

B.3. Monte Carlo modifications of the genome : 275

 276

B.3.1. Virtual mutations: 277

We will call 'virtual mutations' the random changes applied to the genome structure. GRAAL 278

considers 5 different types of elementary virtual mutations and 4 composite mutations as detailed 279

below. 280

 281

Elementary mutations: 282

The 5 elementary mutations are defined as follows: 283

 Split: this mutation splits a contig at a bin and is formally noted as (), where i is the 284

index of the bin , and indicates whether the split occurs to the left or right of 285

the bin. As a result of this operation, contig () is replaced by two new contigs: 286

{

{
 new,left (

) if

 new,left (

) if

{
 new,right (

) if

 new,right (

) if

 new () new,left new,right

 where () (() ()). 287

 288

 289

 Paste: this mutation concatenates two contigs and is formally noted as (), where k 290

and l are the indices of the two contigs to be pasted, and indicates whether or not 291

contig is flipped before pasting. As a result of this mutation, the two contigs and 292

are replaced by a single new contig obtained by concatenating (or it flipped version) to 293

the right of . Note that the orientation of the bins inside each contig are preserved. 294

S(i,-1)

S(i,-1)

f
i

Split

{

 new (

) if

 new (

 (

) (

) (
)) if

 new { } new

 where the operator (flipping a bin) is defined below. 295

Split and paste are reciprocal operations, i.e. one mutation can reverse the effect of the 296

other, such that: (

) () () () , where
 is the 297

index of the contig resulting from the split operation that was originally to the left of bin 298

 ,
 () is the index of the contig still containing after the split, is the 299

leftmost bin of contig l, and is the "null" mutation, which leaves the genome 300

unchanged. 301

 302

 Duplicate: This mutation duplicates a bin and is formally noted as (). As a result of 303

this mutation, a copy of fi is added to the current set of bins and a new contig consisting of 304

this single bin is added to the current contig set : 305

{
 new { }

 new { }

P(k,l,-1)

C
k

C
l

P(k,l,+1)

Paste

 306

 Delete: formally noted as (), this mutation leads to the removal of bin fi from the 307

current set of bins and from the contig that contained it: 308

{

 new { }

 new (

)

 new { } new

where () (() ()). 309

 310

 Flip: formally noted as (), this mutation flips the orientation of bin fi in its containing 311

contig. 312

 313

{

 new

 ()

 new {

 } {

 }

 new (

 new

)

 new { } new

 314

where () (() ()). The reciprocal operation of a flip is itself: () () . 315

D(i)

f
i

Duplicate

R(i)

f
i

Delete

 316

 317

Any complex alteration of the genome (defined at the resolution of bins) can be decomposed into 318

a sequence of these five mutations and . However, for complex structural changes 319

such as translocations, the required sequence may be very long, and it might take unreasonable 320

time for the sampler to achieve them using Monte Carlo moves. Therefore, we introduce the 321

following composite mutations: 322

 323

Composite mutations: 324

 Eject: this mutation, noted as (), pops out bin fi from its contig, and pastes together the 325

two extremities flanking the bin, leaving fi as a new contig. It is therefore a composite of 326

two split and one paste mutations: 327

 () (

) () ()

 where
 and

 are the indices of the contigs resulting from the two splits and originally 328

located to the left and the right of bin fi. 329

 330

 331

F(i)

Flip
f
i

E(i)

f
i

Eject

 Insert: this mutation, noted as () inserts an isolated bin (i.e. a contig consisting of a 332

single bin) to the right of bin into its contig (). It is a composite of one split and 333

two paste mutations: 334

 () () () ()

 where () designates the bin immediately to the right of within contig 335

 (). Ejection and insertions are reciprocal operations, i.e. : () () () 336

 () . 337

 338

 339

 Translocate: this mutation mimics a biological translocation which swaps two parts of 340

distinct chromosomes and is denoted as (), where i and j designate the bin on 341

the two contigs () and () to the right of which the translocation events take 342

place, and where and indicate whether the two swapped regions are 343

flipped or not. This operation is a composite of two split and two paste mutations: 344

 () (
) (

) () ()

 where () and () are the indices of the bin immediately to 345

the right of and , respectively, on contigs () and (). 346

 I(I,j)

f
j

Insert

f
i

 347

 The reciprocal operation of a translocation is itself: 348

 () ()

 349

 Jump: this mutation, noted (), extracts bin from its contig () and inserts it to 350

the right of bin on contig (). It can be decomposed into an ejection followed by an 351

insertion: 352

 () () ()

Translocate

f
i

f
j

T(i,j,+1,+1
)

T(i,j,-1,+1)

T(i,j,+1,-1)

T(i,j,-1,-
1)

 353

 354

These composite mutations can generate more complex and drastic alterations of genome 355

structure in a single step, thereby allowing faster exploration of larger regions of structure space 356

than the elementary mutations. 357

 358

We now introduce some notations that will be important for the following section. First, we call 359

 { } the set of all 9 mutations and use the generic notation 360

with { } for individual members of this set (for example, is the paste mutation. We 361

point out that each of the 9 mutations can be defined by either one (mutations) or 362

two indices of bins (mutations ,) and, for some mutations, one or two auxiliary binary 363

parameters . To formally note the parameters of an arbitrary mutation in , we can 364

therefore use the notation: (), where it is understood that j is relevant only for mutations 365

 , and corresponds to the auxiliary parameter, if relevant (e.g. () for , 366

 { } for). We call the set of all possible values of the auxiliary parameter for 367

mutation . For example, {() () () ()} . Finally, we note 368

 () the structure resulting from application of mutation to the genome G. 369

 370

B.3.2. Multiple Try Metropolis updates of genome structure 371

Now that we have defined the possible mutations, we explain how they are used to update 372

genome structures. 373

Jump

f
i

f
j

J(i,j)

In devising the sampling algorithm, we initially implemented a basic Metropolis-Hastings 374

algorithm
12

. However, this led to very low acceptance rates of individual moves and excessive 375

computation time. In order to accelerate the sampling, we therefore implemented a new algorithm 376

based on a more sophisticated sampling strategy known as Multiple-Try Metropolis that 377

evaluates several candidate moves at each step and has been shown to allow significantly 378

improved computation times
13

. 379

 380

The canonical MTM method works as follow: 381

 382

1. Randomly pick one bin by choosing a random integer i between 1 and N (the current 383

number of bins) with uniform probability. 384

2. Next, randomly pick a number K of distinct bins () with . In contrast to the 385

first bin , however, these bins are not drawn with uniform probability, but with a 386

probability: 387

 ()

∑ []

As a consequence, the sampled bins tend to have high contact probability with and 388

are therefore likely to be located in close linear proximity vicinity on the same 389

chromosome. 390

3. Consider the set of all candidate genome structures obtained by separately 391

applying each of the 9 mutations to the current genome structure with all possible 392

values of the auxiliary parameters, i.e.: 393

 () { ()() [] [] }

Among all structures in this set, we pick a random subset of structures (with uniform 394

probability): 395

 { }

For each of these candidate structure, we evaluate the likelihood () () 396

using equations 1 and 2. Note that the nuisance parameters are held constant (they are 397

updated separately as described in section A.2.4). 398

4. For each candidate structure ()(), we define: 399

 () () ()

 where the proposal function T is chosen as: 400

 () ()

5. Among the proposed candidate structures, we select one, called with probability 401

proportional to 402

 () () () () ()

6. We note j the index of the bin that led to this structure ()(). We then 403

randomly pick another set of K bins , with probability () and define a new set of 404

genome structures : 405

 (
) { ()() [] [] }

 Among this set, we randomly pick (with uniform probability) structures. 406

 {

 }

7. Finally, we compute the generalized Metropolis-Hastings acceptance ratio as: 407

 min {
 () () ()

 (
) (

) (
)

}

 With probability r, we accept the new structure and set . In case of rejection, 408

we set: 409

 410

However, in order to lower the computing load of the process we implemented an alternative 411

version of the algorithm. At step 5, we set = and therefore skip steps 6 and 7. The 412

resulting random process is no longer a time homogeneous Markov chain, but the efficiency of 413

this strategy is experimentally verified. 414

 415

B.4. Monte Carlo updates of the nuisance parameters : 416

The nuisance parameters are updated as follows: 417

First, we randomly pick one of the three parameters with equal probability 1/3, i.e. we choose 418

 { }. Second, we consider a new candidate value for this parameter by addition of a 419

normally distributed random variable: 420

 with () 421

We chose to set the variance of the parameter change to a small fraction of the initial value: 422

 . This choice was made because of the high sensitivity of the likelihood to small 423

variations of the parameters. 424

We note the new candidate set of parameters obtained by replacing parameter by in . 425

Next, we accept this candidate with probability: 426

 min(
 (

)

 ()
)

where the ratio of likelihoods on the right is computed using Eqs 1 and 2. 427

If this move is accepted, we set:
 , otherwise we keep: . 428

 429

 430

B.5. Sampling from the Markov chain: 431

Starting from the initialization of and as defined in A.2.1 and A.2.2, we let the Markov 432

moves update and under the rules specified in sections A.2.3 and A.2.4 for a total number 433

of iterations max In order to approximate the probability distribution (), we discard all 434

samples obtained during an initial burn-in period specified by a number of iterations burn-in and 435

use all samples thereafter, i.e. we use () with burn-in max. We chose max and 436

 burn-in depending on , the number of restriction fragments in the Hi-C data set D. Typically 437

used values are: burn-in and max . 438

 439

B.6. Metrics 440

We use different metrics to quantify assembly quality or otherwise characterize the sampled 441

structure probability density. 442

 i r(contigs) : One simple way to measure the variability among the sampled structures is 443

to measure the variability of contig number. Here, we use the interquartile range (i.e. the 444

difference between the 75% and the 25% percentiles) of the number of contigs in the 445

structure samples (
burn-in

 max
). 446

 Error: In order to quantify the quality of assembly on a known genome, we define an error 447

measured as follows: we examine the position of each bin , and ask if its 448

immediate flanking neighbors and its orientation are correct. Depending on the answer, 449

we attribute a bin error { } , where if both neighbors and orientation are 450

correct, and if all are incorrect. We then define the total normalized error as 451

∑

. The normalization ensures that A perfect assembly (at the level of 452

bins) yields . Note that this measure is quite sensitive to assembly errors, since any 453

displacement of a bin from its true position (irrespective of the magnitude of this 454

displacement) and any incorrect orientation will increase E. 455

 456

 457

 458

Supplementary references 459

 460

1. Burton, J. N. et al. Chromosome-scale scaffolding of de novo genome assemblies based on 461

chromatin interactions. Nat. Biotechnol. 31, 1119–1125 (2013). 462

2. Kaplan, N. & Dekker, J. High-throughput genome scaffolding from in vivo DNA interaction 463

frequency. Nat. Biotechnol. 31, 1143–1147 (2013). 464

3. Rieping, W., Habeck, M. & Nilges, M. Inferential structure determination. Science 309, 303 465

(2005). 466

4. Rosa, A. & Zimmer, C. Computational models of large-scale genome architecture. Int. Rev. 467

Cell Mol. Biol. 307, 275–349 (2014). 468

5. Barbieri, M. et al. Complexity of chromatin folding is captured by the strings and binders 469

switch model. Proc. Natl. Acad. Sci. U. S. A. 109, 16173–8 (2012). 470

6. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals 471

folding principles of the human genome. Science 326, 289–93 (2009). 472

7. Duan, Z. et al. A three-dimensional model of the yeast genome. Nature 465, 363–367 (2010). 473

8. Wong, H. et al. A predictive computational model of the dynamic 3D interphase yeast 474

nucleus. Curr. Biol. CB 22, 1881–90 (2012). 475

9. Tanizawa, H. et al. Mapping of long-range associations throughout the fission yeast genome 476

reveals global genome organization linked to transcriptional regulation. Nucleic Acids Res. 477

38, 8164–77 (2010). 478

10. Koszul, R., Caburet, S., Dujon, B. & Fischer, G. Eucaryotic genome evolution through the 479

spontaneous duplication of large chromosomal segments. EMBO J. 23, 234–243 (2004). 480

11. Martinez, D. et al. Genome sequencing and analysis of the biomass-degrading fungus 481

Trichoderma reesei (syn. Hypocrea jecorina). Nat. Biotechnol. 26, 553–560 (2008) 482

12. Salzberg, S. L. et al. GAGE: A critical evaluation of genome assemblies and assembly 483

algorithms. Genome Res. 22, 557–567 (2011). 484

13. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of 485

chromatin interactions. Nature 485, 376–380 (2012). 486

14. Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical recipes 3rd 487

edition: the art of scientific computing. 1235 pages (Cambridge University Press, 2007). 488

15. Liu, Jun S and Liang, Faming and Wong, W. H. The multiple-try method and local 489

optimization in Metropolis sampling. J. Am. Stat. Assoc. 95, 121–134 (2000). 490

 491

